Math 567:22 1/6

Chapter 11 Probabilistic Method

Definition A probability space is a triple (Ω, Σ, P) , where Ω is a set, $\Sigma \subseteq 2^{\Omega}$ is a σ -algebra on Ω (a collection of subsets containing Ω and closed on complements, countable unions and countable intersections), and P is a countably additive measure on Σ with $P[\Omega] = 1$. The elements of Σ are called events and the elements of Ω are called elementary events. For an event A, P[A] is called the probability of A.

We will consider Ω finite and $\Sigma = 2^{\Omega}$ in our examples later.

1: Give an example of
$$(\Omega, \Sigma, P)$$
.
ROLL A DIE $\Sigma = \{1, 2, 3, 4, 5, 6\}$
 $P[S(15] = \frac{1}{6}$
 $P[S(15] = \frac{1}{6}$
 $P[A] = \sum_{i=1}^{n} P[A]$
2: Why is P on Σ and not on Ω ?
 $P[A] = \sum_{i=1}^{n} P[A]$
2: Why is P on Σ and not on Ω ?
 $P[X = \frac{1}{2}] = 0$
 $P[X = \frac{1}{2}] = 0$

Events A, B are independent if $P[A \cap B] = P[A]P[B]$. More generally, events A_1, \ldots, A_n are independent if for any subset of indices $I \subseteq [n]$

$$\mathbf{P}\left[\bigcap_{i\in I}A_i\right] = \prod_{i\in I}\mathbf{P}[A_i].$$

4: Find three events A_1 , A_2 and A_3 that are pairwise independent but not mutually independent. (You need to say what is (Ω, Σ, P) as well.) *Hint:* $\Omega = \{a, b, c, d\}$ and $P[x] = \frac{1}{4}$ for each $x \in \Omega$ could work.

$$A_{1} = \{a, b\} \qquad P[A_{1} \cap A_{3}] = \frac{1}{4} \qquad P[A_{1}] = \frac{1}{2}$$

$$A_{2} = \{a, c\} \qquad \frac{1}{4} = P[A_{1}] \cdot P[A_{3}]$$

$$A_{3} = \{b, c\} \qquad P[A_{1} \cap A_{2} \cap A_{3}] = 0 \qquad \frac{3}{11} P[A_{1}] = \frac{1}{8}$$

€€\$© by Bernard Lidický, somewhat following Vondrák, Matoušek.

For events A and B with P[B] > 0, we define the conditional probability of A, given that B occurs, as

$$\mathbf{P}[A|B] = \frac{\mathbf{P}[A \cap B]}{\mathbf{P}(B)}.$$

5: Simplify the formula for independent events A and B. $P[A \cap B] = \frac{P[A \cap B]}{P[D]} = \frac{P[A \cap B]}{P[D]} = \frac{P[A \cap B]}{P[D]} = P[A]$

A real random variable on a probability space (Ω, Σ, P) is a function $X : \Omega \to \mathbb{R}$ that is P-measurable. (That is, for any $a \in \mathbb{B}, \{\omega \in \Omega : X(\omega) \le a\} \in \Sigma$.) We use Ω discrete, so no trouble with measurable in our case. Expectation for finite Ω can be expressed as $E[X] = \sum_{\omega \in \Omega} P[\omega|X(\omega))$

Real random variables X, Y are independent if for every two measurable sets $A, B \subseteq \mathbb{R}$,

$$P[X \in A \text{ and } Y \in B] = P[X \in A] \cdot P[Y \in B].$$

For verification, it is enough to check

$$P[X \le a \text{ and } Y \le b] = P[X \le a] \cdot P[Y \le b]$$

6: What is $P[X \in A]$? $P\left[\left\{ \text{NS e } S : X(\text{NS}) \in A\right\}\right]$

7: Show the following for a finite probability space. If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$.

$$V_{x} \quad V_{y} \quad values on x \quad And Y \quad (Possible values)$$

$$E(x Y) = \sum_{a \in V_{x}} a \cdot b \quad P[X = a \quad And Y = b]$$

$$= \sum_{a \in V_{x}} a \cdot b \quad P[x = a] \cdot P[Y = b]$$

$$= (\sum_{a \in V_{x}} a \cdot P[x = a]) \cdot (\sum_{b \in V_{y}} b \cdot P[Y = b])$$

$$= E(x) \quad \cdot \quad E(Y)$$

, EACH EDGE HAR KUTHS

2-coloring hypergraphs - Construct something random.

A k-uniform hypergraph (V, E) has V as a set of vertices and edges $E \subseteq \binom{V}{k}$. That is, edges are k-subsets.

A hypergraph is c-colorable if its vertices can be colored with c colors so that no edge is monochromatic i.e., at least two different colors appear in every edge.

Let m(k) denote the smallest number of edges in a k-uniform hypergraph that is not 2-colorable.

8: What is m(2)?

9: Use probabilistic method to show that for any $k \ge 2$,

$$m(k) \ge 2^{k-1}. \qquad m(2) \ge 2$$

Hint: Union bound.

ASSUME M<2" = #OFEDLES OF H -_ K-UNIFORD HYPERLANDY

Color Vertrices OF H RANDONIL 154 & GOUDS
B: = EVENT EDGE: IS MONCHEDMARIL & ECI, 2, ..., M] COAL P[U];]<1
P[B:] =
$$\int \left(\frac{1}{2}\right)^{k} = \int_{1-k}^{1-k} = \frac{2}{2^{k}} \frac{e}{All} = 2$$

Pick Grow For EACH VIX
 $P[U]B:] = \sum_{i}^{n} P[B:] = m \cdot 2^{i-k} < \sum_{i}^{k-1} 2^{i-k} = 1$
Linearity of Expectation

Linearity of Expectation Let X_1, \dots, X_n be random variables, $X = c_1 X_1 + \dots + c_n X_n$, then

$$\mathbb{E}[X] = c_1 \mathbb{E}[X_1] + \dots + c_n \mathbb{E}[X_n].$$

Definition For an event A, the indicator random variable I_A has value 1 if event A occurs and has value 0 otherwise.

10: Calculate the expected number of fixed points of random permuation σ on $\{1, \ldots, n\}$, i.e., the number of i such that $\sigma(i) = i$.

11: Show that there is a tournament on n vertices that has at least $\frac{n!}{2^{n-1}}$ Hamiltonian paths. Remark: Alon(1990) proved that the maximum number of Hamiltonian paths is at most $cn^{3/2} \frac{n!}{2^{n-1}}$.

12: Show that any graph G with e edges contains a bipartite subgraph with at least e/2 edges. Hint: randomly partition vertices into two parts.

The above result can be improved:

13: Show that if G has 2n vertices and e edges, then it contains a bipartite subgraph with at least $\frac{n}{2n-1}e$ edges. If G has 2n + 1 vertices and e edges, then it contains a bipartite subgraph with at least $\frac{n+1}{2n+1}e$ edges

14: Given vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with $|v_i| = 1$. Show that there exist $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$ such that

$$|\varepsilon_1 v_1 + \dots + \varepsilon_n v_n| \leq \sqrt{n},$$

and also there exist $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$ such that

$$|\varepsilon_1 v_1 + \dots + \varepsilon_n v_n| \ge \sqrt{n}.$$

Hint: pick ε_i randomly

€€\$© by Bernard Lidický, somewhat following Vondrák, Matoušek.

15: Given vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with $|v_i| \leq 1$. Let $p_1, \ldots, p_n \in [0, 1]$ be arbitrary, and set $w = p_1 v_1 + \cdots + p_n v_n$. Then there exist $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$ so that set $v = \varepsilon_1 v_1 + \cdots + \varepsilon_n v_n$, we have

$$|w-v| \le \frac{\sqrt{n}}{2}.$$

16: Let *F* be a family of subsets of $[n] = \{1, \ldots, n\}$ such that there are no $A, B \in F$ satisfying $A \subset B$. Let σ be a random permutation of [n]. Consider the random variable $X = |\{i : \{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \in F\}|$. Prove $|F| \leq {n \choose \lfloor n/2 \rfloor}$ by considering the expectation of *X*.

Some estimates:

$$n! \le n^n \qquad n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
$$\left(\frac{n}{e}\right)^n \le n! \le en \left(\frac{n}{e}\right)^n \qquad \left(\frac{n}{k}\right)^k \le \left(\frac{n}{k}\right) \le \left(\frac{en}{k}\right)^k$$
$$\frac{2^{2m}}{\sqrt{2m}} \le \left(\frac{2m}{m}\right) \le \frac{2^{2m}}{2\sqrt{m}}$$
$$(1-p)^m \le e^{-pm} \qquad (1-p) \ge e^{-2p} \text{ for } 0 \le p \le \frac{1}{2}$$

17: (Bonus) Let $(\Omega, 2^{\Omega}, P)$ be a finite probability space, where all elementary events have the same probability. Show that if $|\Omega|$ is a prime, then there does not exist a pair of non-trivial independent events. Trivial events are \emptyset and Ω .