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Chapter 11 Probabilistic Method

Definition A probability space is a triple (⌦,⌃,P), where ⌦ is a set, ⌃ ✓ 2
⌦
is a �-algebra on ⌦ (a collection

of subsets containing ⌦ and closed on complements, countable unions and countable intersections), and P is a

countably additive measure on ⌃ with P[⌦] = 1. The elements of ⌃ are called events and the elements of ⌦ are

called elementary events. For an event A, P[A] is called the probability of A.

We will consider ⌦ finite and ⌃ = 2
⌦
in our examples later.

1: Give an example of (⌦,⌃,P).

Solution: Imagine rolling a die.

Then ⌦ would be {1, 2, 3, 4, 5, 6} as the possible outcomes. It is the samples space

containing all possible outcomes.

⌃ contains all subsets, for example event E we are interested in would be “even num-

ber”, this is a {2, 4, 6} ✓ ⌦.

Finally P is a probability of an event. Here P[E] =
1

2
if it is a fair die.

2: Why is P on ⌃ and not on ⌦?

Solution: Imagine experiment of picking a random real number in [0, 1]. Any fixed

number x has P[x] = 0 yet x can actually be selected. A non-zero P is for event such

as P[x  1/2] =
1

2
. We will not have this issues if ⌦ finite. Then for an event A 2 ⌃,

we simply have P[A] =
P

x2A P[x].

3: Show that for any collection of events A1, . . . , An,

P

"
n[

i=1

Ai

#


nX

i=1

P(Ai).

Solution: Define events Bi = Ai \
Si�1

j=1
Aj. Then

Sn
i=1

Ai =
Sn

i=1
Bi and since Bi’s

are pairwise disjoint, one can use the additivity.

Events A, B are independent if P[A\B] = P[A]P[B]. More generally, events A1, . . . , An are independent if for

any subset of indices I ✓ [n]

P

"
\

i2I
Ai

#
=

Y

i2I
P[Ai].

4: Find three events A1, A2 and A3 that are pairwise independent but not mutually independent.

(You need to say what is (⌦,⌃,P) as well.)
Hint: ⌦ = {a, b, c, d} and P[x] = 1

4 for each x 2 ⌦ could work.

Solution: ⌦ = {a, b, c, d}, A1 = {a, b}, A2 = {a, c}, A3 = {b, c}. P is
1

4
for every

elementary event.
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For events A and B with P[B] > 0, we define the conditional probability of A, given that B occurs, as

P[A|B] =
P[A \B]

P(B)
.

5: Simplify the formula for independent events A and B.

Solution: P[A|B] = P[A]

A real random variable on a probability space (⌦,⌃,P) is a function X : ⌦ ! R that is P-measurable. (That

is, for any a 2 B, {! 2 ⌦ : X(!)  a} 2 ⌃.)

We use ⌦ discrete, so no trouble with measurable in our case.

Expectation for finite ⌦ can be expressed as E[X] =
P

!2⌦ P[!]X(!).

Real random variables X, Y are independent if for every two measurable sets A,B ✓ R,

P[X 2 A and Y 2 B] = P[X 2 A] · P[Y 2 B].

For verification, it is enough to check

P[X  a and Y  b] = P[X  a] · P[Y  b].

6: What is P[X 2 A]?

Solution: P[X 2 A] = P[{! 2 ⌦ : X(!) 2 A}]
7: Show the following for a finite probability space. If X and Y are independent random variables, then

E[XY ] = E[X] · E[Y ].

Solution: Let the VX and VY be the sets of possible values of X and Y , notice they

are finite.

E[XY ] =

X

a2VX ,b2VY

a · b · P[X = a and Y = b]

=

X

a2VX ,b2VY

a · b · P[X = a] · P[Y = b]

=

 
X

a2VX

a · P[X = a]

!
·
 
X

b2VY

b · P[Y = b]

!

= E[X] · E[Y ].
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2-coloring hypergraphs - Construct something random.

A k-uniform hypergraph (V,E) has V as a set of vertices and edges E ✓
�V
k

�
. That is, edges are k-subsets.

A hypergraph is c-colorable if its vertices can be colored with c colors so that no edge is monochromatic i.e., at

least two di↵erent colors appear in every edge.

Let m(k) denote the smallest number of edges in a k-uniform hypergraph that is not 2-colorable.

8: What is m(2)?

Solution: m(2) asks for graphs. Smallest is the triangle.

9: Use probabilistic method to show that for any k � 2,

m(k) � 2
k�1.

Hint: Union bound.

Solution: Let H be a k-uniform hypergraph with m < 2
k�1

edges. Color every vertex

uniformly at random red and blue. The probability space is the set of all 2-colorings

on H. Let Be be the BAD event that edge e is monochromatic.

P[Be] = 2 · 1

2k
= 2

1�k
.

Now we use

P[[eBe] 
X

e

P[Be] = m · 21�k
< 2

k�1 · 21�k
= 1.

Hence there is a non-zero probability of 2-coloring of H.

Linearity of Expectation

Linearity of Expectation Let X1, · · · , Xn be random variables, X = c1X1 + · · · ,+cnXn, then

E[X] = c1E[X1] + · · ·+ cnE[Xn].

Definition For an event A, the indicator random variable IA has value 1 if event A occurs and has value 0

otherwise.

10: Calculate the expected number of fixed points of random permuation � on {1, . . . , n}, i.e., the number of

i such that �(i) = i.

Solution: Let Xi be the indicator random variable of the event �(i) = i. Then

X = X1 + · · ·+Xn, we have E(Xi) = 1/n, so

E[X] =

X

i

E[Xi] = 1.
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11: Show that there is a tournament on n vertices that has at least
n!

2n�1 Hamiltonian paths.

Remark: Alon(1990) proved that the maximum number of Hamiltonian paths is at most cn3/2 n!
2n�1 .

Solution: Consider a random tournament, each edge is oriented independently uni-

formly at random. For each permutation � on {1, . . . , n}, the sequence �(1), . . . , �(n)

is a Hamiltonian path with probability 1/2
n�1

.

Let X be the number of Hamiltonian paths, X� be the indicator random variable of

the event �(1), . . . , �(n) is a Hamiltonian path. Then

E[X] =

X

�

E[X�] =
n!

2n�1
.

12: Show that any graph G with e edges contains a bipartite subgraph with at least e/2 edges.

Hint: randomly partition vertices into two parts.

Solution: Let G = (V,E). Let (A,B) be a random partition of V given by 8v 2
V,Pr[v 2 A] = 1/2. So an edge is crossing with probability 1/2. Let X be the number

of crossing edges. For any edge uv of G, let Xxy be the indicator random variable of

the event xy is crossing. Then

E[X] =

X

uv

E[Xuv] =
e

2
.

The above result can be improved:

13: Show that if G has 2n vertices and e edges, then it contains a bipartite subgraph with at least
n

2n�1e edges.

If G has 2n+ 1 vertices and e edges, then it contains a bipartite subgraph with at least
n+1
2n+1e edges

Solution: Let G = (V,E). Let (A,B) be a random partition of V . But this time

choose A from all n-subset of V uniformly at random. If G has 2n vertices, then for

an edge uv, the probability that it is crossing is
n

2n�1
.

If G has 2n+ 1 vertices, then the probability of an edge uv being crossing is

2 · n

2n+ 1
· n+ 1

2n
=

n+ 1

2n+ 1
.

14: Given vectors v1, . . . , vn 2 Rn
with |vi| = 1. Show that there exist "1, . . . , "n = ±1 such that

|"1v1 + · · ·+ "nvn| 
p
n,

and also there exist "1, . . . , "n = ±1 such that

|"1v1 + · · ·+ "nvn| �
p
n.

Hint: pick "i randomly

cbna by Bernard Lidický, somewhat following Vondrák, Matoušek.
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Solution: Pick "i independently with P["i = 1] = 1/2,P["i = �1] = 1/2. Let

X = |"1v1 + · · ·+ "nvn|2, then X =
P

i,j "i"jvi · vj, so

E[X] =

X

i,j

E["i"j]vi · vj.

If i 6= j, then E["i"j] = 0, if i = j, then E["i"j] = 1, so

E[X] =

X

i

vi · vi = n.

15: Given vectors v1, . . . , vn 2 Rn
with |vi|  1. Let p1, . . . , pn 2 [0, 1] be arbitrary, and set w = p1v1 + · · ·+

pnvn. Then there exist "1, . . . , "n 2 {0, 1} so that set v = "1v1 + · · ·+ "nvn, we have

|w � v| 
p
n

2
.

Solution: Pick "i independently with P["i = 1] = pi,P["i = 0] = 1 � pi. Let

X = |w � v|2.
E[X] =

X

i,j

E[(pi � "i)(pj � "j)]vi · vj.

For i = j, E[(pi � "i)(pj � "j)] = pi(1� pi)  1/4.

For i 6= j, E[(pi � "i)(pj � "j)] = E[pi � "i]E[pj � "j] = 0. So

E[X] 
X

i

vi · vi/4  n/4.

16: Let F be a family of subsets of [n] = {1, . . . , n} such that there are no A,B 2 F satisfying A ⇢ B. Let

� be a random permutation of [n]. Consider the random variable X = |{i : {�(1),�(2), . . . ,�(i)} 2 F}|. Prove
|F | 

� n
bn/2c

�
by considering the expectation of X.

Solution: X  1 since no A,B 2 F satisfy A ⇢ B. So E[X]  1.

For any subset A of [n], if |A| = k, then the probability that {�(1), . . . , �(k)} = A is

1

(
n
k)

� 1

(
n

bn/2c)
. So

E[X] � |F |� n
bn/2c

� .

Therefore |F | 
� n
bn/2c

�
.
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Some estimates:
n!  nn n! ⇡

p
2⇡n

⇣n
e

⌘n

⇣n
e

⌘n
 n!  en

⇣n
e

⌘n ⇣n
k

⌘k

✓
n

k

◆

⇣en
k

⌘k

2
2m

p
2m


✓
2m

m

◆
 2

2m

2
p
m

(1� p)m  e�pm
(1� p) � e�2p

for 0  p  1

2

17: (Bonus) Let (⌦, 2⌦, P ) be a finite probability space, where all elementary events have the same probability.

Show that if |⌦| is a prime, then there does not exist a pair of non-trivial independent events. Trivial events

are ; and ⌦.
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